Addressing Item-Cold Start Problem in Recommendation Systems using Model Based Approach and Deep Learning

نویسندگان

  • Ivica Obadic
  • Gjorgji Madjarov
  • Ivica Dimitrovski
  • Dejan Gjorgjevikj
چکیده

Traditional recommendation systems rely on past usage data in order to generate new recommendations. Those approaches fail to generate sensible recommendations for new users and items into the system due to missing information about their past interactions. In this paper, we propose a solution for successfully addressing item-cold start problem which uses model-based approach and recent advances in deep learning. In particular, we use latent factor model for recommendation, and predict the latent factors from item’s descriptions using convolutional neural network when they cannot be obtained from usage data. Latent factors obtained by applying matrix factorization to the available usage data are used as ground truth to train the convolutional neural network. To create latent factor representations for the new items, the convolutional neural network uses their textual description. The results from the experiments reveal that the proposed approach significantly outperforms several baseline estimators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network

The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Collaborative filtering and deep learning based recommendation system for cold start items

Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, bu...

متن کامل

Deep Neural Architecture for News Recommendation

Deep neural networks have yielded immense success in speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks for recommender systems has received a relatively little introspection. Also, different recommendation scenarios have their own issues which creates the need for different approaches for recommendation. Specifically in news re...

متن کامل

Addressing cold-start problem in music recommendation with HMM-based Collaborative Profile Space analysis

In this paper, Collaborative Profile Space analysis, a novel approach based on HMM, is proposed to tackle the “new item” cold start problem in music recommendation task. By calculating the probability of generating a particular song from a set of trained HMMs, coordinates in the Collaborative Profile Space is defined, and used in the classifiers. With self-collected dataset and evaluation strat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1706.05730  شماره 

صفحات  -

تاریخ انتشار 2017